
1

IT INTERFACE

LIFE climate value chains DELIVERABLE D4.2
IT-INTERFACE ENGLISH

2

Informations about LIFE

The LIFE program forms the basis for measures to
promote environmental and climate protection by the
European Union. The aim of the LIFE program is to es-
tablish environmentally friendly, innovative products,
processes and services as well as best practice in
Europe and to further develop the corresponding po-
licy and administrative practice. The program forms a
bridge between research and implementation on a lar-
ge scale.

Das Programm LIFE bildet die Grundlage für Maßnah-
men zur Förderung des Umwelt- und Klimaschutzes
durch die Europäische Union. Ziel des Programms LIFE
ist es, umweltfreundliche, innovative Produkte, Verfah-
ren und Dienstleistungen sowie Best Practice in Eu-
ropa zu etablieren und die entsprechende Politik und
Verwaltungspraxis weiterzuentwickeln. Das Programm
bildet eine Brücke zwischen der Forschung und der
Umsetzung im großen Maßstab.

Document informations

Doc. ref. No.: LIFE_CVC_C4_2

In coordination with a European Working Group within the frame of a projekt fundet by the European LIFE programme.

Autors: Dr. Gabriele Bruckner and Dr. Philipp Strohmeier (HVH, Germany)

Co-Autors: Luca Galeasso and Erik Dalmas (Envi park Turin, Italy). Bernard Likar and Helena Cvenkel (Wood industry
clus-ter, BSC Kranj). Erich Rainer (Ing, HVH, Austria).

Publisher of the document:
Holz von Hier gemeinnützige GmbH. Neuenreuth 24, DE-95473 Creußen Germany; www.holz-von-hier.eu

HOLZ VON HIER® (HVH) resp. LOW CARBON TIMBER® (LCT) - All rights reserved

This guide is available in printed and digital form.

The digital guide is continuously updated with new developments or new practical examples, while the print version is
published at regular intervals. The evironmental Labels LOW CARBON TIMBER© and HOLZ VON HIER© are trademarks of
the non-profit organisation Holz von Hier.

The project LIFE Climate Value Chains
received funding from the LIFE pro-
gram of the European commission.

The contents of this publication are
the sole responsibility of Holz von
Hier and do not necessarily reflect the
opinion of the European Union

3

Contents

1 / IT Interfaces 1

1.1 / Introduction 1

1.2 / LCT-RESTful-API-base 2

1.2.1 / Overview 2

1.2.2 / RESTful-API-base 2

1.2.3 / Advantages 3

1.2.4 / JSON 4

1.2.5 / Tokens 4

1.2.6 / Practical test in the project 4

1.2.7 / Further action 5

1.3 / EUDR-HVH/LCT-IT 5

1.3.1 / SOAP based EUDR-HVH/LCT-IT-Interface 5

1.3.2 / Differences REST and SOAP 5

1.3.3 / Basisc Principles SOAP 7

1.3.4 / Programming in the LCT-HVH-System for the EUDR 8

1.3.5 / First Tests 8

1.3.6 / Further Procedure 8

4

1 / IT Interfaces

1.1 / Introduction
Two types of IT interfaces were implemented in the
project. Only one interface was originally planned in
the application, but the latest developments and re-
quirements from the European Union regarding the
EUDR made it necessary to develop a second type of
interface.

(1) IT interface value chain

The first interface was developed to optimize the
HVH-LCT verification management processes bet-
ween companies in the supply chain. Since larger
companies purchase such a large number of raw
material deliveries or market products to a large
number of customers, it is hardly possible to handle
the transaction processes manually via the HVH-LCT
electronic controlling system, as is customary. The
interface enables the automated execution of HVH-
LCT certifications of deliveries or product batches, so
that larger companies can also use the certification
system. This means that even large quantities of
wood product flows can be recorded, influenced and
made climate-friendly.

With the help of the project, a modern RESTful API
interface tailored to timber supply chains was cre-
ated. Such modern interfaces are also used by large

companies such as Amazon for the complex organiz-
ation of goods distribution.

(2) EUDR IT interface

The second IT interface is an automated connection
to the European Commission's “TRACES” platform,
the central platform for the implementation of the
new European regulation on deforestation-free sup-
ply chains (EUDR). The platform is used for the sub-
mission of due diligence declarations by companies
in supply chains whose raw materials originate from
areas that could potentially be affected by deforesta-
tion.

Since timber processing companies are affected by
the EUDR and are obliged to submit such due diligen-
ce declarations, a corresponding interface between
the digital controlling system of the HVH/LCT and the
EU platform was to be developed in order to be able
to provide data and information required by the EUDR
via HVH/LCT.

Such an interface was very important in order for the
HVH/LCT to be able to offer support to companies
in the timber industry within the framework of the
EUDR. Otherwise, there is a risk that companies will
save costs and effort for voluntary systems such as
HVH/LCT and perceive the new, mandatory EUDR as
an additional burden.

1

IT INTERFACES

5

1.2 / LCT-RESTful-API-base

1.2.1 / Overwiev

The IT interface was specially developed to provide
customers with seamless and efficient integration
with the LCT/HVH system. At its heart is a specially
designed RESTful API that supports both JSON-ba-
sed data transfer and server-side transaction execu-
tion. This API makes it possible to automate business
processes and connect existing IT systems directly to
the LCT/HVH platform without having to rely on the
graphical user interface.

The architecture of the RESTful API was designed
with a focus on scalability, security and performance.
Among other things, it supports HTTPS-secured com-
munication, token-based authentication and granular
access rights (precise control of access rights).

Thanks to support for synchronous and asynchronous
data handling, both real-time data and complex batch
operations can be processed. Comprehensive excep-
tion handling with standardized error feedback enab-
les rapid problem analysis and increases operational
reliability. The IT interface thus creates the basis
for future-proof and modular extensions that can be
tailored precisely to the individual needs of supply
chain participants.

1.2.2 / RESTful-API-base

A programming interface, an “API”, defines the ru-
les that users must follow to communicate with
other software systems. APIs are used so that ap-
plications can communicate programmatically and
without problems. APIs are always geared towards
the respective defined main aspect or main aspects
of communication. Most API interfaces are geared
towards “clients” and “resources”. Clients are users
who want to access information. The client can be a
person or a software system that uses the API. Re-
sources in the sense of an IT interface are informa-
tion that various applications make available to their
clients. The “resources” can be images, videos, text,
numbers or any other type of data. Organizations use
APIs to share resources and provide web services
while maintaining security, control and authenticati-
on. APIs also help to define in detail and differentiate
which client is allowed to access certain or which
internal resources.

A Representational State Transfer (REST) based in-
terface, a “RESTful API”, is an interface that allows
two computer systems to exchange information se-
curely over the Internet. Most business applications
need to communicate with other internal and external
applications to perform various tasks. RESTful APIs
support this information exchange by following se-
cure, reliable and efficient software communication
standards. REST-based IT architecture is used today
to support high-performance reliable communication
between two IT systems according to the specified
level, while maintaining the highest possible IT se-
curity.

Some principles of the RESTful API interface are brie-
fly described below:

Uniformity. The basis of a RESTful web service is
that the server transfers information in a standard
format. The formatted “resource” is referred to as a
representation in REST. This format may differ from
the internal representation of the resource on the
server application. Uniformity imposes architectural
constraints, such as the following: Requests should
identify resources, they do so by using a uniform re-
source identifier. Clients have sufficient information
in the resource representation to modify or delete the
resource if they wish. The server fulfills this conditi-
on by sending metadata that describes the resource
in more detail. Clients receive information about the
further processing of the representation. The server
accomplishes this by sending self-describing messa-
ges that contain metadata about how the client can
best use it. Clients receive information about any
other related resources they need to complete a task.

Statelessness. In the REST architecture, “stateless-
ness” refers to a communication method in which the
server completes each client request individually and
independently of all previous requests. This minimi-
zes errors, especially in complex contexts such as
supply chains, and makes it possible to control them
individually in the first place. Only in this way can
individual supply chains be monitored at all. Clients
can request resources in any order and each request
is stateless or isolated from other requests. The
REST API design must be such that the server can
fully understand and process the request every time.

Layered model. In the layered architecture of the
RESTful API, the “client” can connect to other autho-
rized intermediaries between the client and the ser-

2

6

3

ver and still receive responses from the server. The
servers can also forward requests to other servers.
The RESTful API is designed to run on multiple ser-
vers with multiple layers such as security, application
and business logic that work together to fulfill client
requests. However, these layers remain invisible to
any “client”.

Code on-demand. In the REST IT architecture sty-
le, servers can temporarily extend or adapt the client
functionality by transferring software programming
code to the client. If an error occurs, for example, this
is reported back almost immediately by the interface
in real time.

1.2.3 / Advantages

The main advantages of the RESTful API over con-
ventional APIs are scalability, flexibility and indepen-
dence.

a) Scalability

Systems that implement REST APIs can scale effi-
ciently because REST optimizes the interactions bet-
ween client and server. Statelessness removes ser-
ver load because the server does not need to store
information about previous client requests. Well-ma-
naged caching removes some client-server interac-
tions partially or completely. All of these features
support scalability without causing communication
bottlenecks that would affect performance.

Scalability is the ability of a system to change size.
Good scalability allows systems to grow well or ma-
kes this possible in the first place. In IT, scalability
means the ability of a system of hardware and soft-
ware to increase performance by adding “resources”,
such as additional processes or hardware, in defined
areas. This possibility should be kept open for LCT/
HVH and scalability was one of the important aspects
and programming requirements for LCT/HVH.

“Statelessness” refers to the property of an IT com-
munication protocol or a distributed system to treat
requests as independent transactions. The communi-
cation participant does not save a protocol state and
therefore cannot link requests from the same client.
Another advantage of statelessness is the reduced
complexity, as no context or session information
needs to be stored and managed. This makes load

balancing and scalability easier to implement.

"Load balancing” is used in IT processes to dis-
tribute extensive calculations or large volumes of
requests across several systems working in parallel
with the aim of making their overall processing more
efficient. If the individual processes are largely inde-
pendent of each other, the architecture form of the
computer cluster is suitable, in which the processes
are distributed across a certain number of similar
servers, a so-called “server farm”. This approach is
often used for larger web applications with many
users. This option should be kept open for LCT/HVH.

If, on the other hand, it is a single, very complex
process, an attempt can be made to split the task
and then merge the results, such as when balancing
a very large number of bookings. This option should
also be kept open for LCT/HVH.

b) Flexibility

RESTful IT services support the total separation bet-
ween client and server. RESTful IT services simplify
and decouple various server components so that each
part can develop independently. Platform or techno-
logy changes to the server application do not affect
the client application. The ability to split application
functions into layers even increases flexibility. For ex-
ample, developers can make changes to the database
layer without having to rewrite the application logic.
This was one of the most important aspects for LCT/
HVH in order to be able to continue to flexibly adapt
the LCT-HVH system to requirements such as those
imposed by new EU regulations for supply chains.

c) Independence

REST APIs are independent of the technology used.
It is possible to write both client and server appli-
cations in different programming languages without
affecting the API design. It is also possible to change
the underlying technology on both sides without af-
fecting communication. This was one of the import-
ant aspects for LCT/HVH, because supply chain net-
works in particular have various users with diverse
internal IT systems, even of different modernity.

Most IT-supported internal IT systems are designed
by the programming forms or program providers in
such a way that their programming languages and
codes and their systems are used, thus creating a

7

4

bond between the customer and the programming
house. RESTful APIs allow users to continue using
their own IT systems as they are used to without ha-
ving to make major and enormously costly changes.
Although certain docking adaptations to the RESTful
API are necessary, such as output formats, a RESTful
API reduces the effort here enormously, as it makes
communication between very different IT systems
possible in the first place, possibly at a very different
level of modernity.

1.2.4 / JSON

JSON is a completely independent data format with
no connection to the JavaScript language. At the
same time, JSON is the ideal format for exchanging
data between systems due to its very simple struc-
ture and encoding in the Unicode character set. It is
always exchanged between applications as a whole.

JSON (JavaScript Object Notation) is a data exchan-
ge format that provides a standardized and efficient
way for data to be exchanged between different sys-
tems. Thanks to its simplicity, flexibility and compa-
tibility with common programming languages, JSON
has become one of the most modern IT technologies.
JSON is a text-based format for storing and exchan-
ging data that is both human- and machine-readab-
le. Although JSON has its roots in JavaScript, it has
grown into a very powerful data format that simpli-
fies data exchange across different platforms and
programming languages.

JSON is a popular data format that is now commonly
used for data transfer between a server and a web
application. Since JSON is text-based, it can be ea-
sily read by humans and understood by computers.
The language-independent nature of JSON makes
it an ideal format for exchanging data between dif-
ferent programming languages and platforms. The-
re are now many databases in which data is stored
and exchanged in JSON. Beyond web development,
JSON is often used in an application or IT system
to store and manage configuration settings. For ex-
ample, configuration files written in JSON format
can contain important information, such as database
connection details, API keys or user settings. Storing
configuration data in simple, easy-to-read and ea-
sy-to-parse JSON files makes it possible to change
application settings without the need for code chan-
ges. JSON is a flexible format for data interchange

that is widely supported across modern programming
languages and software systems. It is text-based and
lightweight, and has a simple, easy-to-parse data
format, meaning that no additional code is required
to understand and interpret the data provided. JSON
has gained traction in API programming because it
enables faster data exchange and quicker results. It
also has the advantage of providing easy access to
open-source and NoSQL document databases, which
store data in JSON format and require no additional
processing when exchanging data.

1.2.5 / Tokens

However, using tokens requires a high level of pro-
gramming knowledge and is therefore not used for
every system. Token-based authentication is a pro-
tocol that allows users to verify their identity and
in return receive a unique “access token”. While
the security token is valid, users have access to the
application for which the token was issued. They do
not have to re-enter their credentials each time they
access the same application or “resource” protected
by the token.

Tokens provide an additional layer of security. Au-
thentication tokens work like a stamped ticket. The
user has access as long as the token is valid. As soon
as the user logs off or exits an application, the token
is canceled. Token-based authentication differs from
traditional password- or server-based authentication

Tokens facilitate or enable external monitoring of
digital interfaces. In the case of the LCT/HVH REST
API, this also allows the system certifiers (TÜV) to
closely monitor every action and transaction within
and via the interface. This is an extremely important
aspect in terms of external monitoring of the LCT/
HVH system, including (!) the interface.

1.2.6 / Practice test in the pro-
ject

The functionality of the RESTful API interface descri-
bed must ultimately be tested and tried out using
practical examples. In the project, this was imple-
mented using the example of a supply chain related
to windows. Such a supply chain presents particular
challenges with regard to certification with Holz von
Hier, since, for example, window manufacturers pro-

8

5

cure raw materials on an order-by-order basis. Here,
a large number of small orders are placed, rather than
a small number of large orders for raw materials.

Likewise, certification of product deliveries to a large
number of customers is necessary. While, for examp-
le, a larger timber construction company may build 50
houses per year that require certification, a window
manufacturing company of the same size may have
as many as 20,000 customer-related individual deli-
veries that would need to be certified. This is why an
interface for automating the transaction processes is
particularly important here.

The supply chain in the practical test comprises two
nodes in succession and reflects the entire chain from
the origin of the raw material to the end customer (fo-
rest – sawmill (and cantel manufacturer) – window
manufacturer – customer). In this specific case, the
window manufacturer's orders for raw materials for
end customers are already referenced, which optimi-
zes traceability but makes the programming of the in-
terface function, which has to be carried out for each
individual company, more complex. This has led to
a significantly longer implementation period, but on
the other hand, it documents and ensures the feasi-
bility for further specific companies and applications,
which are usually more straightforward.

1.2.7 / Further action

The programming required in the project mainly con-
cerned the fundamental implementation of a RESTful
API in the digital controlling system of Holz von Hier.
This work is fundamental, but only necessary once.
The basis for this was therefore created in the pro-
ject. However, a specific use of this interface function
by a specific company still requires an adaptation or
addition to the individual circumstances and specifi-
cations of the IT system used by the company. These
adaptations were and are not part of the project, as
they serve specific individual companies and not the
whole. Such individual adaptations are therefore to
be borne by interested companies themselves after
the end of the project.

1.3 / EUDR-HVH/LCT-IT

1.3.1 / SOAP based EUDR-HVH/
LCT-IT-Interface

After programming the “LCT-HVH-RESTful-API-base”
based on REST, the EUDR requirement was issued in
the European Union, which is to be implemented in
2025. Since the European due diligence was based
on a SOAP API, but the LCT-HVH interface was based
on REST, an additional module had to be created for
the LCT/HVH system to enable a connection to the
SOAP-based EUDR system. This is the only way for
companies in the LCT-HVH network to fulfill EUDR
requirements via the LCT/HVH system as part of cer-
tification transactions.

SOAP and REST are two different approaches to API
design. The SOAP approach is highly structured and
uses the XML data format. REST is more flexible and
allows applications to exchange data in different for-
mats.

SOAP and REST are used to create APIs or commu-
nication points between different applications. Both
describe rules and standards for how applications
make, process and respond to data requests from
other applications. Both use HTTP, the standardized
internet protocol, to exchange information. Both sup-
port SSL/TLS for secure, encrypted communication.

However, SOAP is an older technology that requires a
more rigid exchange of data between systems. REST
was developed after SOAP and inherently addresses
many shortcomings that SOAP still has. REST is the-
refore the more modern IT architecture today.

SOAP is the Simple Object Access Protocol, a mes-
saging standard defined by the World Wide Web
Consortium and its members. This is probably one of
the main reasons why this format was chosen for the
European EUDR platform.

1.3.2 / Differences between
REST and SOAP

The following table shows an overview of the dif-
ferences between the two API structures SOAP and
REST (Tab. 1).

9

SOAP REST

What
does it
do?

SOAP is a proto-
col for communi-
cation between
applications.

REST is an
architectural style
for designing
communication
interfaces.

Design The SOAP API
makes the pro-
cess available.

The REST API
makes the data
available.

Transport-
protocoll

SOAP is inde-
pendent and can
work with any
transport proto-
col.

REST only works
with HTTPS.

Data
format

SOAP only sup-
ports XML data
exchange.

REST supports
XML, JSON, plain
text, HTML.

Perfor-
mance

SOAP messages
are larger, which
slows down com-
munication..

REST offers faster
performance due
to smaller mes-
sages.

Scalability SOAP is difficult
to scale. The
server maintains
the state by sto-
ring all previous
messages. .

REST is easy
to scale. It is
stateless, so each
message is pro-
cessed indepen-
dently of previous
messages.

Security SOAP supports
encryption with
additional over-
head.

REST supports en-
cryption without
performance
impact.

Use SOAP is useful in
legacy applica-
tions and private
APIs.

REST is useful in
modern applica-
tions and public
APIs.

Tab. 1) Overview of the differences between the two API
structures.

SOAP is a protocol, while REST is an “IT architecture
style”. This leads to significant differences in the be-
havior of SOAP APIs and REST APIs.

Key features of SOAP are

1. SOAP always uses an XML data format.

2. SOAP is a protocol that defines rigid communica-
tion rules.

3. There are several associated standards such as
Web Services Security (WS-Security), the ad-
dressing of web services (WS-Addressing) by
specifying routing information as metadata.

4. WS-ReliableMessaging standardizes error hand-
ling in SOAP messaging.

5. The Web Services Description Language (WSDL)
describes the scope and function of SOAP web
services.

6. When sending a request to a SOAP, the HTTP
request must be packaged in a “SOAP envelo-
pe.” This is a data structure that modifies the
underlying HTTP content based on SOAP request
requirements. The envelope also allows you to
send requests to SOAP web services using other
transport protocols, such as TCP or Internet Cont-
rol Message Protocol (ICMP). These “envelopes”
harbor uncontrolled possibilities for error.

By comparison, REST is a software architecture style
that imposes conditions on how an API works, which
are required by more flexible applications. These in-
clude:

1. Sender and receiver are independent of each
other in terms of technology, platform, program-
ming language (client-server architecture).

2. The server can have multiple intermediaries that
work together to process client requests, but
they are invisible to the client (layered structure).

3. The API returns data in a standard format that is
complete and fully usable (interface uniformity).

4. The REST API completes each new request inde-
pendently of previous requests (stateless).

5. All REST API responses can be cached (cachab-
le), which is important for external certification of
the interface function.

6. The REST API response can include a code snip-
pet if needed (code on demand).

7. Rest API responses are usually in JSON, but can
also be in another data format.

6

10

1.3.3 / Basics SOAP

(1) Design

The SOAP API makes functions or operations avai-
lable, while REST APIs are mostly data-driven. Mo-
dern applications such as mobile apps and hybrid
applications work better with REST APIs. REST offers
the scalability and flexibility to use applications with
modern architecture patterns (e.g. microservices,
containers, etc.). However, if you need to integrate or
extend older systems, such as the IT systems in the
EU (e.g. customs and others) that already have older
IT solutions, it may be better to develop an interface
with SOAP.

However, this usually requires users to make a much
more extensive customization of existing internal IT
than with REST or the LCT-HVH REST API. Therefo-
re, in terms of adapting the LCT-HVH system to the
EUDR, extensive customizations also had to be made
in the LCT-HVH system itself.

(2) Flexibility

SOAP systems are rigid and only allow XML messa-
ging between applications. The application server
must also maintain the state of each client. This me-
ans that when processing a new request, it must re-
member all previous requests. REST is more flexible
and allows applications to transfer data as plain text,
HTML, XML and JSON. REST is also stateless, so the
REST API handles each new request independently of
previous requests.

Flexibility was a very important requirement for the
first LCT-HVH interface (see chapter x), which is why
REST was the solution of choice here.

(3) Performance

SOAP messages are larger and more complex, which
means that they can be transmitted and processed
more slowly. This can increase page loading times.
REST is faster and more efficient than SOAP due to
the smaller message sizes of REST. REST responses
can also be cached, allowing the server to store fre-
quently retrieved data in a cache for even faster page
loading times.

Speed and performance were very important for the
real-time recording of supply chains in LCT/HVH,

which is why the REST-based solution was the first
choice for the first interface. Since deliveries can
also be bundled in the EUDR implementation, so-
metimes even once a year, speed is not an essential
requirement here.

(4) Scalability

The SOAP protocol requires applications to store
state between requests, which increases bandwidth
and memory requirements. As a result, applications
become expensive and scaling is difficult. In contrast
to SOAP, REST enables a stateless and multi-layer ar-
chitecture, making it more scalable. For example, the
application server can forward the request to other
servers or leave it to an intermediary (e.g. a content
delivery network) to process.

Scalability is always an important criterion for IT so-
lutions for LCT/HVH, which is why the REST-based
solution was the first choice for the interface. Since
the EUDR system will probably not require any sca-
ling and is intended to remain an isolated solution,
the aspect of scalability was probably not an import-
ant criterion here. Many other EU-supported IT sys-
tems are also isolated solutions so far.

(5) Security

SOAP requires an additional WS security layer to
work with HTTPS. WS-Security uses additional hea-
der content to ensure that only the specified process
on the specified server reads the content of the SOAP
message. This increases the communication effort
and has a negative impact on performance. REST
supports HTTPS without any additional effort.

REST APIs therefore offer more flexibility, which
is required, for example, in networks or changing
supply chains. In contrast, SOAP APIs are often used
within individual companies or corporate structures
or by public authorities to map internal company
requirements.

The special solution of the new LCT-HVH-REST-API
offers a modern comparable, if not higher, data secu-
rity than conventional SOAP solutions by using vari-
ous adds such as tokens and reprogramming.

(6) Reliability

SOAP has an integrated error handling logic and of-

7

11

fers more reliability. On the other hand, REST requi-
res that you retry in case of communication failures.

This has been greatly optimized in the LCT-HVH REST
API through comprehensive exception handling with
well-known iterative adaptive and standardized er-
ror responses. This now enables very fast problem
analysis and increases operational reliability. In the
future, this can also be used to build AI solutions for
problem analysis if desired and necessary.

(7) ACID compliance

SOAP has built-in compliance for atomicity, consis-
tency, isolation, and durability (ACID). If you want
to implement comparable requirements with REST,
REST APIs may require additional software modules
to enforce the status at the server or database level.
This is the case with the new LCT-HVH REST API.

1.3.4 / Programming in the LCT-
HVH system for EUDR

The EUDR programming includes the complete
technical connection to the European Due Diligence
SOAP API. This includes the extension of the existing
MariaDB database structure with additional tables,
foreign key relationships and indexes to meet the
increased data integrity, consistency and processing
speed requirements.

The server-side logic was implemented in the PHP
Zend Framework, including dedicated transaction
controllers for consistent data processing.

To optimize user interaction, a new, intuitive user
interface was implemented that enables a clear
presentation of data and efficient troubleshooting.
On the back end, a multi-level error handling system
was integrated that detects both API-side errors such
as SOAP faults and database-related inconsistencies
and provides precise solutions.

The developed “EUDR interface” ensures a secure,
standardized and legally compliant transfer of all re-
levant data to the EUDR platform, thus fully meeting
the compliance requirements of the EU Due Diligence
Regulation.

1.3.5 / First Tests

Conducting the first tests of the EUDR interface pro-
ved to be more complex and time-consuming than ex-
pected, due to both technical and regulatory changes
during the development phase. Originally, the testing
effort had been estimated to be manageable, but ad-
justments to the EU-DDS API conformance tests led
to additional challenges. In particular, the EU-DDS
API error handling was updated during the course of
the project, which meant that our system had to be
adapted and retested. These changes mainly affec-
ted the processing of SOAP faults and the consistent
reporting of errors to users.

In addition, legal changes complicated the develop-
ment and testing process. Originally, it was planned
that all companies would be required to submit Due
Diligence Statements (DDS) from January 1, 2025.
However, this requirement was adjusted multip-
le times and finally changed to remain optional in
2025. This meant that the system had to be adapted
for a mixed case in which some companies already
submit DDS while others do not. This new require-
ment necessitated additional programming work to
seamlessly support the different scenarios, as well
as extensive testing to ensure that all possible cons-
tellations could be processed correctly.

The combination of these factors led to a longer de-
velopment and testing phase than originally planned.
Nevertheless, the iterative adaptation and refine-
ment of the interface allowed both the technical re-
quirements and the amended legal requirements to
be successfully integrated into the system.

1.3.6 / Further steps

The interface was set up and programmed so that
each company in the Holz von Hier network can deci-
de whether they want to use the Holz von Hier elec-
tronic control system to automatically submit due di-
ligence declarations to the TRACES platform via the
newly programmed interface. It did not make sense
to have a mandatory link between the two, since the
deliveries and transactions certified with HVH al-
ways meet the EUDR requirements, but not all goods
flows that meet the EUDR requirements automatical-
ly meet the criteria of Holz von Hier.

8

12

Any questions? We are happy to help.

Contatcs:

LOW CARBON TIMBER ®
HOLZ VON HIER®

head office:
+ 49 (0) 9209 / 918 97 51

dr. Philipp Strohmeier and dr. Gabriele Bruckner

Service LCT/HVH Germany and Benelux:
 + 49 (0) 9209 / 918 97 51

Philipp Strohmeier, Gabriele Bruckner - Holz von Hier Germany

Service LCT/HVH Austria and Lichtenstein:
+ 43 (0) 664 / 3906478

Erich Reiner - Holz von Hjer Austria

Service LCT/HVH Italy:
+ 39 011 - 2257480

Luka Galeasso c/O ENVI Park Turino

Service LCT/HVH Slowenia:
Bernard Likar for enterprises fon.: +386 41 354 131 c/o Wood Cluster Slovenia-

Helena Cvenkel - for communities : fon.: +386 31302382 c/o BSC Kranj

www.holz-von-hier.eu
www.low-carbon-timber.eu

